Search results for "Weyl law"
showing 3 items of 3 documents
Fractal Weyl law for open quantum chaotic maps
2014
We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition.
Toeplitz band matrices with small random perturbations
2021
We study the spectra of $N\times N$ Toeplitz band matrices perturbed by small complex Gaussian random matrices, in the regime $N\gg 1$. We prove a probabilistic Weyl law, which provides an precise asymptotic formula for the number of eigenvalues in certain domains, which may depend on $N$, with probability sub-exponentially (in $N$) close to $1$. We show that most eigenvalues of the perturbed Toeplitz matrix are at a distance of at most $\mathcal{O}(N^{-1+\varepsilon})$, for all $\varepsilon >0$, to the curve in the complex plane given by the symbol of the unperturbed Toeplitz matrix.
Distribution of Large Eigenvalues for Elliptic Operators
2019
In this chapter we consider elliptic differential operators on a compact manifold and rather than taking the semi-classical limit (h →), we let h = 1 and study the distribution of large eigenvalues. Bordeaux Montrieux (Loi de Weyl presque sure et resolvante pour des operateurs differentiels non-autoadjoints, these, CMLS, Ecole Polytechnique, 2008. https://pastel.archives-ouvertes.fr/pastel-00005367, Ann Henri Poincare 12:173–204, 2011) studied elliptic systems of differential operators on S1 with random perturbations of the coefficients, and under some additional assumptions, he showed that the large eigenvalues obey the Weyl law almost surely. His analysis was based on a reduction to the s…